Rehabilitation of Prolonged Concussion Symptoms in Young Athletes

Mick Collins, PT, DPT

Financial Disclosures

• I have no relevant financial disclosures

Referral to Physical Therapy

- Typically 1-6 weeks post injury. Can be months.
- Patients with ongoing symptoms:
 - Physical (headache, dizziness, cervical pain)
 - Cognitive (memory, attention)
 - Affective (depression, anxiety)
 - Sleep related issues
- Typically demonstrate:
 - Vestibular-oculomotor impairments
 - Exercise intolerance
 - Difficulty with school attendance/participation

Risk Factors for Prolonged Recovery

- Greater number or severity of symptoms after injury
- Loss of consciousness
- On-field dizziness or cognitive symptoms
- Subjective reports of "fogginess"
- Migraine-cluster symptoms headache, nausea, photophobia, phonophobia, visual problems, dizziness
- Age younger brains still developing
- History of depression, anxiety, migraines, ADD/ADHD, or learning disabilities
- Female gender
 - Due to decreased head-neck mass?
 - Due to higher levels of estrogen and cerebral blood flow?

What is happening with prolonged concussion?

- Prolonged symptoms may be due to persistent central/peripheral physiological changes, rather than a direct result of neuronal damage
- Concussed patients have altered autonomic regulation
 - Increased sympathetic ("fight or flight") and decreased parasympathetic ("rest and digest") function
 - Higher heart rate at rest and with physical and cognitive stress
 - Disturbed cerebral blood flow and cerebral autoregulation (ability to maintain constant cerebral blood flow with changes in blood pressure)
 - Altered pulmonary ventilation leading to decreased cerebral blood flow

Leddy 2007

What is happening with prolonged concussion?

ANS Dysfunction

- Ventilation is inappropriately low for the level of exercise intensity, raising arterial carbon dioxide (PaCO2) levels.
- Elevated PaCO2 increases cerebral blood flow (CBF) out of proportion to exercise intensity (think you are exercising harder than you are)
- Subthreshold aerobic exercise treatment increased CO2 sensitivity to normal, which normalized PaCO2, exercise ventilation, CBF, and exercise tolerance, and resolved symptoms.

Leddy 2018

Post Concussion Syndrome

- Term used to describe a constellation of nonspecific symptoms
 - Headache, fatigue, sleep disturbance, vertigo, irritability, anxiety, depression, apathy, difficulty with concentration and exercise
- Linked to several possible causes that do not necessarily reflect ongoing physiological brain injury
- Challenge is to determine if prolonged symptoms reflect prolonged concussion pathophysiology or a manifestation of a secondary process

The Vestibular System

- Allows eyes to remain fixed on a target while head and body move
- Sensory input from inner ear allows for adjustments in eye movements and motor control that stabilize head and body during movement
- Involves vestibular apparatus, sensory organs, and central processing and coordination in brain
- Specific areas of brain are responsible for integrating sensory information
 - Cerebellum, cerebral cortex, thalamus, reticular formation, brainstem

The Vestibular System

Consists of two systems:

- Vestibulo-spinal component regulates postural stability
- Vestibulo-ocular component maintains visual stability during head movements
- Together play a vital role in balance, gaze stabilization, and visual and spatial orientation

Kontos 2017

Vestibulo-spinal component

- Helps to regulate postural stability
 - Objective balance impairments usually resolve in 3-5 days post-concussion
 - Screen with:
 - BESS Test
 - Sensory Organization Test (SOT)

Kontos 2017

Vestibulo-ocular component

- Integrates vision and movement of the head
 - 30% of patients with a concussion report visual symptoms in the first week after injury. Symptoms may persist
 - 50-80% of patients experience dizziness
 - Screen with:
 - Vestibular Oculomotor Screen (VOMS)

Oculomotor function

- Underlying pathophysiology of oculomotor dysfunction after SRC is complex
 - Occurs via versional eye movements (pursuits and saccades) and vergence movements (convergence and divergence)
 - Combine with visual fixation movements (gaze holding, optokinetic responses, VOR)
 - Change angle of gaze and hold visual images steady

Kontos 2017

Vestibular/Oculomotor Symptoms

Vestibular symptoms	Oculomotor symptoms
Dizziness	Headaches
Nausea	Blurred vision
Vertigo	Convergence insufficiency
Blurred or unstable vision	Difficulty reading
Discomfort in busy environments	Diplopia
Loss of balance	Difficulty tracking a moving target
Unsteady gait	Asthenopia
	Problems scanning for visual information

Kontos 2017

Vestibular/Oculomotor Symptoms

- Concussion patients may not always report "dizziness", may need to ask specific questions about symptoms:
 - Blurry vision, difficulty focusing, "fogginess"
 - Discomfort with motion
 - Stairs, walking, driving
 - Challenged with busy visual environments
 - Crowds, walking through hallways or stores, attending practices or games
 - Impaired balance especially in the dark
- Dizziness Handicap Inventory to help identify impairments

Mucha 2014

Brain or Strain?

- Study of patients with persistent symptoms for >3 weeks post head injury
- Cognitive, somatic and behavioral symptoms on PCS did not reliably discriminate between:
 - Patients with physiological post concussion disorder (persisting symptoms + exercise intolerance on treadmill test)
 - Patients with cervicogenic and/or vestibular-ocular post concussion disorder (persisting symptoms + normal exercise tolerance + abnormal cervical and/or vestibularocular exams)

Leddy 2015

Cervical dysfunction following SRC

- Whiplash mechanisms are similar to impulsive forces described in concussive injuries
- Symptoms of concussion and whiplashassociated disorders display remarkable similarity:
 - Headache, neck pain, disturbance of concentration/memory, dizziness, irritability, sleep disturbance, and fatigue described in concussion and whiplash patients
- Cervical zygapophyseal joints implicated as generators of headache and dizziness

Leslie, 2013

Evaluating Concussions

PT Eval - Subjective

- Date of injury and mechanism
- Immediate/current symptoms
 - Activities that increase symptoms
 - Symptom patterns time of day, frequency, severity
- Prior level of function
 - Academics, activity
- Past medical history
 - Concussion hx, orthopedic hx, migraines, cervical pain, mental health, ADD/ADHD, learning difficulty

PT Eval - Subjective

- Social/living situation
- School status
 - Attending full or partial days
 - Using accommodations
- Reading/screen tolerance
- Sleep hygiene
 - Melatonin, valerian root?
- Mood
- Diet/hydration
- Prior imaging, neurocognitive testing

Education

- Take this opportunity to educate patient and family
- Lots of misconceptions, misunderstandings
- Dispel myths early, reduce fear and anxiety
- Improve rapport and patient compliance

Objective

- Neuro exam
 - Cranial nerves I-XII
 - DTRs
 - Biceps brachii C5 Brachioradialis C6 Triceps C7
 - Myotomes
 - Dermatomes
 - Babinski, Hoffman's

Cook, 2012

- Cervical exam
 - ROM/joint mobility
 - Trigger points
 - Special tests
 - Cervical distraction test
 - Flexion rotation test
 - Headache differentiation
 - (CO-1, C1-2, C2-3)
 - Spurling's test
 - Quadrant test
 - Upper limb tension test
 - Alar Ligament stress test
 - Sharp-Purser test
 - Anterior Shear test
 - Muscle performance
 - Scapular endurance test
 - Neck flexor endurance test
 - Lateral lift test

Vestibular Oculomotor Screen (VOMS) Methods

- 64 patients, aged 13.9 ± 2.5, 5.5 ± 4.0 days post-SRC
- Administered PCSS and VOMS assessment:
 - 1. Smooth pursuits
 - 2. Horizontal and vertical saccades
 - 3. Near point of convergence (NPC) distance
 - 4. Horizontal vestibular ocular reflex (VOR)
 - 5. Visual motion sensitivity (VMS)
 - 6. *Vertical VOR added in to revision*
 - Patients verbally rate changes in symptoms
 - Headache, dizziness, nausea and fogginess

Mucha 2014

Vestibular Oculomotor Screen (VOMS) Results

- 61% reported symptom provocation after 1 VOMS item
- No control subjects reported any symptoms > 2/10 for any item
- VOMS items positively correlated to PCSS total symptom score
- VOR and VMS most predictive of being in concussed group
- Mean NPC distance in concussed group 4cm greater than control
- NPC distance ≥ 5cm increased probability of correctly identifying concussed patients by 34%
 - +LR 5.8
- VOMS item score ≥ 2/10 increased probability of correctly identifying concussed patients by 46%
 - +LR 23.9 (smooth pursuit, vertical saccade), +LR 42.8 (VOR)
- Positive VOR, VMS, & NPC leads to a positive predictive value of 0.89 of identifying concussion

Mucha 2014

VOMS Application

- Document baseline symptoms headache, dizziness, nausea, fogginess, blurred vision, asthenopia (eye strain)
 - Rate symptoms 0-10/10 (similar to NPRS)
- Positive test eyes not moving together/symmetrically or reproduction of symptoms
- Reassess symptoms after each segment of testing
- Allow them to rest and have symptoms decrease before moving onto next segment

Convergence

- Focus on a small target at arms length, then slowly bring it in toward nose
- Stop when two distinct images are seen or outward deviation of eye is observed – blurry vision is okay
- 3 repetitions measure distance from nose to target
- Abnormal test is > 6 cm
- Reassess symptoms

Smooth Pursuits

- Hold fingertip 3 feet away from patient
- Patient tracks target as you move about 30° left and right (about 1.5 feet each direction) – 2 repetitions
- Should take about 2 seconds to go from left to right
- Reassess symptoms
- Repeat vertically

Whitney, 2016

Horizontal & Vertical Saccades

- Sit 3 feet from patient and hold each of your index fingertips about 3 feet apart horizontally (1.5 feet to the left/right of midline)
- Patient quickly switches gaze from one target to the other
- Reassess symptoms
- Repeat vertically

Vestibular-Ocular Reflex (VOR)

- Patient focuses on a target 3 feet away
- Rotate head horizontally while keeping the target in focus – 20° each direction, 10 cycles
- 180 beats/minute is normal could use metronome
- Assess symptoms 10 seconds after each test
- Repeat vertically

Visual Motion Sensitivity

- May be referred to as VOR cancellation
- Patient holds arms outstretched, focus on thumb or another target and rotate arms left/right 80°
- 50 beats/minute for 5 cycles (10 swipes) is normal – could use metronome
- Assess symptoms

Other Vestibular Tests

- BPPV Testing Dix Hallpike, Horizontal Roll Test
- Cover & Uncover Tests (Tropias/Phorias)
 - Look for head tilt or misalignment of eyes
- Optokinetic nystagmus
- Head Thrust Test (VOR)
- Head Shake Nystagmus Test (VOR)
 - Requires Frenzel goggles

Mucha 2014

Balance Assessment

- Balance Error Scoring System (BESS) Test
 - 6 segments: each lasts 20 seconds
 - Eyes closed, hands on hips, no shoes
 - Feet together, tandem stance, single leg stance
 - May skip single leg if < 13 years old
 - Test on both solid ground and on airex pad
 - Non-dominant side for single leg stance, non-dominant foot behind for tandem stance
 - Spot patient for safety

Riemann 1999

BESS Scoring

<u>Errors</u>

- 1. Hands lifted off of iliac crest
- 2. Opening eyes
- 3. Step, stumble, or fall
- 4. Moving hip into > 30 degrees abduction
- 5. Lifting forefoot or heel
- Remaining out of test position > 5 seconds
- Add one point for each error during each of the six 20-second tests
- If unable to hold position for 5 seconds, score the maximum number of errors (10)

BESS Reliability

• 241 pediatric, 102 adult patients, concussion symptoms lasting longer than 10 days

Reliability	ICC	Standard BESS	Excluding firm double	Excluding firm double and foam double	'Modified BESS'
	All patients $(n = 343)$	0.800	0.820	0.816	0.596
	Paediatric $(n = 241)$	0.778	0.795	0.797	0.587
	Adult $(n = 102)$	0.829	0.851	0.846	0.615

- ICC minimally improved with omission of firm double and foam double stance
- Study demonstrates high reliability for BESS in cohort of patients with prolonged concussion symptoms

Cushman 2018

Graded Exertion Testing

- Looking to assess sub-symptomatic threshold
- Can help determine treatment classification
- Assists with safe exercise prescription
- Balke Treadmill test (BCTT)
 - 15mins, 3.3mph, progress to 15% incline increasing incline 1% every minute
 - HR monitored throughout
 - Terminate test with symptom provocation (increase of >3 from baseline)
 - Symptoms should subside with rest
 - If they don't, maybe emotional component to recovery

How soon is safe?

- 54 patients, mean age 15 years, 4 days post injury
 - 27 performed BCTT on visit 1, 27 did not
 - Heart rate threshold (HRt) at symptom exacerbation established
 - Patients recorded symptoms daily for 14 days then had follow up BCTT
 - Recovery defined as return to normal symptoms and exercise tolerance
- Days to recover and typical vs prolonged recovery not different between groups
 - Symptom severity scores decreased in both groups and were similar 1 day post BCTT
 - Lower HRt on day 1 associated with prolonged recovery
- Use of BCTT within first week did not affect recovery
 - Degree of early exercise tolerance important for prognosis

Concussion Treatment and Rehabilitation

Concussion Treatment

- Usually multi-faceted:
 - Address cervicothoracic dysfunction
 - Cervicothoracic and soft tissue mobilization
 - Scapular and deep cervical flexor strengthening
 - Postural retraining and ergonomics
 - Gaze stabilization/vestibular exercises
 - Balance and proprioception
 - Active rehabilitation
 - Cardiovascular/aerobic activities progressing to sport specific activities

Broglio 2015, Leddy 2016, Ellis 2016, Grabowski 2016

When to start?

- 677 patients, 7-18 years old
- Intervention
 - Aerobic activity, coordination skill/practice, visualization, education and motivation
- All patients experienced improvement of symptoms while participating in active rehab
 - Patients starting at 2 or 3 weeks post injury demonstrated lower symptom severity at f/u (2 weeks later) than those starting at 6 weeks or more
 - Patients starting at 2 weeks post injury demonstrated lower symptom severity at f/u than those starting at less than 2 weeks, 4 weeks and 5 weeks

Dobney, 2017

Treatment Classification

- Physiologic
 Vostibulo ocula
- Vestibulo-ocular
- Cervicogenic

Ellis 2015

Collins 2013

Treatment Classification

- Cervicogenic
 - Headaches, migraines, dizziness
- Vestibular/Oculomotor
 - VOR, saccades, convergence, motion sensitivity
 - Positional changes
- Physiologic
 - Exercise intolerance
- Emotional
 - Depression, anxiety, irritability, frustration, self-esteem, confidence, fatigue

Lots of overlap between treatment groups both initially and as treatment progresses

Cervicogenic

Pathophysiology	Symptoms	Physical exam findings
 Muscle trauma and inflammation Joint dysfunction Dysfunction of cervical spine proprioception 	 Neck pain, stiffness Decreased ROM Occipital headaches exacerbated by movement not physical or cognitive activity Lightheadedness and postural imbalance 	 Decreased cervical lordosis and ROM Paraspinal and sub- occipital tenderness Impaired cervical proprioception Positive cervical special tests Tolerated max exertion on graded treadmill testing

Ellis 2015

Manual therapy and exercise

- Combination of manual therapy and exercise indicated for cervical treatment
- Manual therapy:
 - Joint mobilization/manipulation
 - Soft tissue mobilization, stretching
 - Muscle energy techniques
 - Dry needling if available
- Exercise
 - Postural strengthening (scapular stabilizers, deep cervical flexors)

Vestibular/Oculomotor

Pathophysiology	Symptoms	Physical exam findings
• Dysfunction of the vestibular and oculomotor systems	 Dizziness, vertigo, nausea, light-headedness Gait and postural instability Blurred or double vision Difficulty tracking objects Motion sensitivity Photophobia Symptoms exacerbated by visual stimulus (reading, riding in car, screen time) 	 Impairments on standardized balance and gait testing Impaired VOR, fixation, convergence, horizontal/vertical saccades Tolerated maximal exertion on graded treadmill testing

Ellis 2015

VOR Exercises

- Place target on wall or hold in front of you, shake head left/right or nod up/down while keeping the target focused
- Start with slow speed, few repetitions
- Eventual goal
 - at least 1 minute, 180 beats/minute, can use a metronome
- Progressions
 - Busier backgrounds/environments, VOR with walking/running forward/backward or with balance challenges

Convergence

- Bring target in toward nose and back out
 - Pencil pushups
 - Brock string
 - Playing catch
- Switch focus from near target to far target within the same line of sight

Saccades

- Quickly switch gaze from one target to another
- Horizontal or vertical
- Can vary the distance between or the depths of the targets
- Can progress to diagonals
- Can vary background

Eye Tracking

- Lazer pen
 - Follow with eyes
 - Tag
- Eye maze
- Number find
 - Can vary patterns 1-15, 15-1, odds up/evens down to add in cognitive dual task
- Can incorporate balance challenges for sensory integration

Visual Motion Sensitivity

- Hold target in front of you at arms' distance
- Rotate left/right with head/arms while keeping target focused
- Progression core rotations, PNF patterns

Dynamic VOR activity

- Familiar exercises with visual focus on target
 - Sit-ups with ball overhead
 - Russian twists with rotation
 - Med ball chops on BOSU
 - Step ups with overhead press
 - Wall sits with rotation
 - Lunges with rotation or with overhead lean
 - Resisted trunk rotation

Cervicovestibular rehabilitation

- 31 patients 18 male, 13 female, 18-30years, diagnosed with SRC dizziness, headache, neck pain
- Weekly sessions with a PT for 8 weeks or until medical clearance
- Control group
 - Postural education, ROM, cognitive and physical rest followed by graded exertion protocol
- Intervention group
 - Same as control + cervical spine and vestibular rehab
- 73% of treatment group medically cleared within 8 weeks vs 7% in control group

Schneider, 2014

Physiologic-

Pathophysiology	Symptoms	Physical exam findings
 Persistent alterations in neuronal depolarization, cell membrane permeability, mitochondrial function, cellular metabolism and cerebral blood flow 	 Headache exacerbated by physical and cognitive exertion Nausea, intermittent vomiting, photophobia, phonophobia, dizziness, fatigue, difficulty concentrating, slowed speech 	 No focal neurological findings Elevated resting HR Graded treadmill tests are often terminated early due to symptom onset or exacerbation

Ellis 2015

Active Rehabilitation

- Gradually increase cardiovascular activity
- Heart rate monitored throughout
- Start at 80% of subsymptomatic threshold

(20mins, 6-7 days/week)

- Progress low to high impact activity (stationary bike to elliptical to running)
- Increase 10bpm per week

Leddy 2010, Leddy 2018

<u>AGE</u>	60%	70%	80%
13	124	145	165
14	123	144	165
15	123	144	164
16	122	143	163
17	122	142	162
18	121	141	162
19	121	141	161

Sport-Specific

- Increasing impact and intensity of activity as tolerated
- Remain below symptom threshold
 - Intervals
 - Plyometrics
 - Circuit training
 - Agility and coordination
 - Sport-specific drills and exercises

Gagnon 2015

Discharge and Return to Play Considerations

- No symptoms reported during ADLs including school for >1 week
- Negative VOMS
- Negative cervical screen ROM, deep flexor endurance, cervical rotation test, trigger points
- BESS within age appropriate norms
- Tolerates sustained cardio >15mins at 60-70% max HR without an increase in symptoms
- Tolerates sport specific activity at 80%+ max HR without an increase in symptoms
 - Short burst, high intensity, sport related movements
- Dual task? Reaction time? Y-balance?

Return to Play

Rehabilitation Stage	Functional Exercise	Objective of Each Stage
0. No activity	Symptom-limited physical and cognitive rest	Recovery
1. Light aerobic exercise	Walking, swimming, stationary cycling at <70% max HR, no resistance training	Increase HR
2. Sport-specific exercise	Skating drills, running drills, no head-impact activity	Add movement
3. Non-contact drills	Progression to more complex training drills e.g. passing in football/hockey Progressive resistance training	Exercise, coordination, cognitive load
4. Non-contact practice	Following medical clearance, participate in normal training activities	Restore confidence, assess functional skills by coaching staff
5. Return to play	Normal game play	

McCrory 2013

Emotional, Behavioural and Psychological

- Emotional and psychological factors can play a role in recovery
- Pre-existing conditions can be exacerbated
- Injury can cause increased levels of anxiety, depression, sleep disturbances, decreased motivation, confidence and self esteem
- Important to refer appropriately if necessary

Team Approach

- May need to involve additional treatment team members if symptoms are not responding as expected – discuss with patient and referring physician
 - Psychologist cognitive-behavioral therapy
 - Neuropsychologist continued difficulty with focusing/concentrating/schoolwork
 - Neuro-opthalmologist persistent ocular symptoms
 - Otolaryngologist (ENT) vestibular/ear symptoms

Leddy 2016

References

1. Alsalaheen B, Mucha A, Morris LO, et al. Vestibular rehabilitation for dizziness and

balance disorders after concussion. J Neurol Phys Ther. 2010;34(2):87–93. doi:10.1097/NPT.0b013e3181dde568.

- 2. Broglio SP, Collins MW, Williams RM, Mucha A, Kontos AP. Current and Emerging Rehabilitation for Concussion. *Clinics in Sports Medicine*. 2015;34(2):213-231. doi:10.1016/j.csm.2014.12.005.
- Collins MW, Kontos AP, Reynolds E, Murawski CD, Fu FH. A comprehensive, targeted approach to the clinical care of athletes following sport-related concussion. *Knee Surgery, Sports Traumatology, Arthroscopy*. 2013;22(2):235-246. doi:10.1007/s00167-013-2791-6.
- 4. Cook C. Orthopedic Manual Therapy: An Evidence Based Approach. 2nd ed. Upper Saddle River, NJ: Prentice Hall; 2012.
- 5. Cordingley D, Girardin R, Reimer K, et al. Graded aerobic treadmill testing in pediatric sports-related concussion: safety, clinical use, and patient outcomes. *Journal of Neurosurgery: Pediatrics*. 2016;18(6):693-702. doi:10.3171/2016.5.peds16139.
- 5. Cushman, D; Hendrick, J; Teramoto, M; Fogg, B; Bradley, S; Hansen, C. Reliability of the balance error scoring system in a population with protracted recovery from mild traumatic brain injury. *Brain Inj.* 32(5):569-574, 2018.
- 6. Dematteo C, Stazyk K, Singh SK, et al. Development of a Conservative Protocol to Return Children and Youth to Activity Following Concussive Injury. *Clinical Pediatrics*. 2014;54(2):152-163. doi:10.1177/0009922814558256.
- 7. Dobney DM; Grilli L; Kocilowicz H; Beaulieu C; Straub M; Friedman D; Gagnon IJ. Is There an Optimal Time to Initiate an Active Rehabilitation Protocol for Concussion Management in Children? A Case Series. J Head Trauma Rehabil. 2017 Sep 18.
- 8. Ellis M, Leddy J, Willer B. Physiological, vestibulo-ocular and cervicogenic post-concussion disorders: An evidence-based classification system with directions for treatment. *Brain Injury* [serial online]. February 2015;29(2):238-248. Available from: CINAHL with Full Text, Ipswich, MA.
- 9. Ellis MJ, Cordingley D, Vis S, Reimer K, Leiter J, Russell K. Vestibulo-ocular dysfunction in pediatric sports-related concussion. *Journal of Neurosurgery: Pediatrics*. 2015;16(3):248-255. doi:10.3171/2015.1.peds14524.
- 10. Ellis MJ, Leddy J, Willer B. Multi-Disciplinary Management of Athletes with Post-Concussion Syndrome: An Evolving Pathophysiological Approach. *Frontiers in Neurology*. 2016;7. doi:10.3389/fneur.2016.00136.
- 11. Furman J, Balaban C, Jacob R, Marcus D. Migraine-anxiety related dizziness (MARD): a new disorder? *J Neurol Neurosurg Psychiatry*. 2005;76:1–8. doi:10.1136/jnnp.2004.048926.

References

- 12. Grabowski P, Wilson J, Walker A, Enz D, Wang S. Multimodal impairment-based physical therapy for the treatment of patients with post-concussion syndrome: A retrospective analysis on safety and feasibility. *Physical Therapy in Sport*. 2017;23:22-30. doi:10.1016/j.ptsp.2016.06.001.
- 13. Gagnon I, Grilli L, Friedman D, Iverson GL. A pilot study of active rehabilitation for adolescents who are slow to recover from sport-related concussion. *Scandinavian Journal of Medicine & Science in Sports*. 2015;26(3):299-306. doi:10.1111/sms.12441.
- 14. Giza CC, Hovda D a. The Neurometabolic Cascade of Concussion. J Athl Train. 2001;36(3):228–235.
- 15. Harmon KG, Drezner JA, Gammons M, et al. American Medical Society for Sports Medicine position statement: concussion in sport. *Br J Sports Med*. 2013;47(1):15–26. doi:10.1136/bjsports-2012-091941.
- 16. Kontos, Anthony P; Deitrick, Jamie McAllister; Collins, Michael W; Mucha, Anne. Review of Vestibular and Oculomotor Screening and Concussion Rehabilitation. J Athlet Train. 52(3):256-261, 2017 Mar.
- 17. Kozlowski K. Progressive Aerobic Exercise Treatment Of Post Concussion Syndrome [e-book]. State University of New York at Buffalo; 2008.
- Lau BC, Kontos AP, Collins MW, Mucha A, Lovell MR. Which On-field Signs/Symptoms Predict Protracted Recovery From Sport-Related Concussion Among High School Football Players? Am J Sports Med. 2011;39(11):2311–2318. doi:10.1177/0363546511410655.
- 19. Leddy JJ, Baker JG, Willer B. Active Rehabilitation of Concussion and Post-concussion Syndrome. *Physical Medicine and Rehabilitation Clinics of North America*. 2016;27(2):437-454. doi:10.1016/j.pmr.2015.12.003.
- 20. Leddy JJ, Kozlowski KF, Donnelly JP, Pendergast DR, Epstein LH, Willer B. A preliminary study of subsymptom threshold exercise training for refractory postconcussion syndrome. *Clin J Sport Med*. 2010;20(1):21–7. doi:10.1097/JSM.0b013e3181c6c22c.
- 21. Leddy JJ, Kozlowski K, Fung M, Pendergast DR, Willer B. Regulatory and autoregulatory physiological dysfunction as a primary characteristic of post concussion syndrome: implications for treatment. *NeuroRehabilitation*. 2007;22 (3):199–205.
- Leddy J, Baker J, Willer B, et al. Brain or Strain? Symptoms Alone Do Not Distinguish Physiologic Concussion From Cervical/Vestibular Injury. *Clinical Journal Of Sport Medicine* [serial online]. May 2015;25(3):237-242. Available from: CINAHL with Full Text, Ipswich, MA.
- 23. Leddy J, Hinds A, Willer B, et al. Safety and Prognostic Utility of Provocative Exercise Testing in Acutely Concussed Adolescents: A Randomized Trial. *Clinical Journal Of Sport Medicine* [serial online]. January 2018;28(1):13-20. Available from: CINAHL with Full Text, Ipswich, MA.
- 24. Leslie O, Craton N. Concussion: Purely a Brain Injury?. *Clinical Journal Of Sport Medicine* [serial online]. September 2013;23(5):331-332.

References

- 25. Mcleod TCV, Hale TD. Vestibular and balance issues following sport-related concussion. *Brain Injury*. 2014;29(2):175-184. doi:10.3109/02699052.2014.965206.
- 26. McCrory P, Meeuwisse WH, Aubry M, et al. Consensus statement on concussion in sport: the 4th International Conference on Concussion in Sport held in Zurich, November 2012. Br J Sports Med. 2013;47(5):250–258. doi:10.1136/bjsports-2013-092313.
- 27. McCrory P, Meeuwisse W, Johnston K, et al. Consensus Statement on Concussion in Sport: the 3rd International Conference on Concussion in Sport held in Zurich, November 2008. Br J Sports Med. 2009;43(Suppl 1):i76–i84. doi:10.1136/bjsm.2009.058248.
- 28. Mucha A. What Physical Therapists Need to Know. In: APTA Combined Sections Meeting Concussion: Latest Advances in Evaluation, Prognosis, and Management of Athletes. Las Vegas, NV; 2014.
- 29. Mucha A, Collins MW, Elbin RJ, et al. A Brief Vestibular/Ocular Motor Screening (VOMS) Assessment to Evaluate Concussions: Preliminary Findings. Am J Sport Med. 2014;42(10):2479–2486. doi:10.1177/0363546514543775.A.
- Nanos, Katherine N; Franco, John M; Larson, Dirk; Mara, Kristin; Laskowski, Edward R. Youth Sport-Related Concussions: Perceived and Measured Baseline Knowledge of Concussions Among Community Coaches, Athletes, and Parents. *Mayo Clin Proc.* 92(12):1782-1790, 2017 Dec.
- 31. Ponsford J, Willmott C, Ng K, et al. Impact of early intervention on outcome after mild traumatic brain injury in children. *Pediatrics* [serial online]. December 2001;108(6):1297-1303.
- 32. Ponsford J, Willmott C, Curran C, et al. Impact of early intervention on outcome following mild head injury in adults. *Journal Of Neurology, Neurosurgery & Psychiatry* [serial online]. September 2002;:330-332.
- 33. Riemann BL, Guskiewicz KM. Effects of mild head injury on postural stability as measured through clinical balance testing. J Athl Train. 2000;35(1):19–25.
- 34. Treleaven J. Sensorimotor disturbances in neck disorders affecting postural stability, head and eye movement control. *Manual Therapy* [serial online]. February 2008;13(1):2-11.
- 35. Treleaven J. Dizziness, Unsteadiness, Visual Disturbances, and Sensorimotor Control in Traumatic Neck Pain. *Journal Of Orthopaedic & Sports Physical Therapy* [serial online]. July 2017;47(7):492-502.
- 36. Whitney SL. Chapter 13/An overview of vestibular rehabilitation. In: *Handbook of Clinical Neurology*. Vol 137. 3rd ed. ; :187-205. Elsevier; 2016
- 37. Yorke A, Littleton S, Alsalaheen B. Concussion Attitudes and Beliefs, Knowledge, and Clinical Practice: Survey of Physical Therapists. *Physical Therapy* [serial online]. July 2016;96(7):1018-1028.

Thank You!

mjcollins@chw.org

